Foxes in Alaska

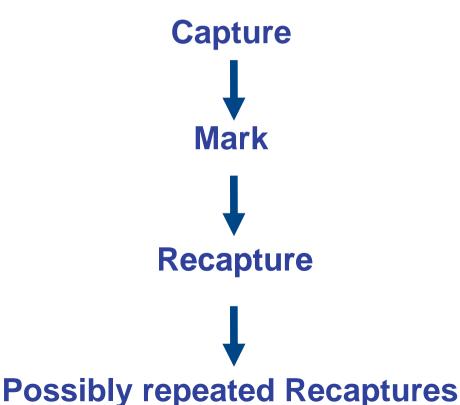

New Analytics Methods in Social Media: Population Estimation Informed by Wildlife Biology

Table of Contents

- Capture Mark Recapture (CMR)
- Applying CMR to Twitter Analytics
- Real World Example Tweets mentioning "Trump"
- Discussion

Population Estimation via Capture Mark Recapture (CMR)

1.) 1st Sample Random Selection of Animals, e.g., Foxes

2.) Animals captured are marked so they can be identified

3.) 2nd Sample

2nd random selection of animals, marked animals are counted (recaptured=previously marked

nth Sample

Capture-Mark-Recapture (CMR) Models

Peterson (1886) Peterson-Lincoln model: The most basic

Lincoln (1930)

capture-mark-recapture (CMR) model

Schnabel (1938) — Generalization of the Petersen-Lincoln method to multiple samples

Cormack(1964)

Jolly(1965)

Seber(1965)

Generalization to open populations

From "Foxes in Alaska" to Tweets

	CMR (Animals)	CMR (Twitter)	
Individuals	Animal Tweet		
Catching	Catching animals	Observing Tweets	
	Total number of	Total number of	
Population	animals of a species	Tweets of a category	
	of interest at time t	of interest at time t	
	Population affected	Twitterers joining in	
Open Population	by immigration and	or leaving Twitter	
	emigration		

Population Estimation Capture-Mark-Recapture

Say, the number of Foxes in the Population of Interest = 15.000 (usually not known!)

= 1000 foxes mark capture

1.) Capture / 1st Sample Random Capture of 4000 Foxes

2.) Mark The foxes are marked and released again

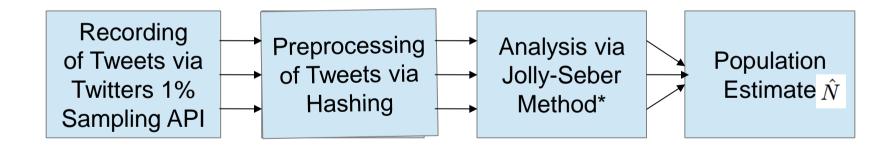
3.) Recapture / 2nd Sample
Random selection of 4000 foxes
1000 of which found to carry a mark

Population Estimation via Petersen-Lincoln Index

Total number of Tweets in the Population of Interest = 19 (usually not known!)

1.) 1st Sample (Capture) Random Selection of

Random Selection of 7 Tweets via Twitter's free Streaming API (1%)


YYYYYYYYYYYYYYYY

*<i>ААААААААААААА*ААА

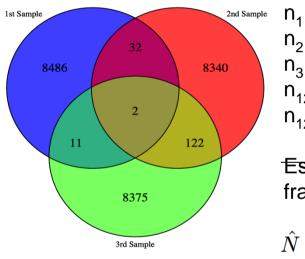
2.) Tweets are recorded (Mark)

3.) Sample (Recapture)

Random Selection of 6 Tweets 2 of of which known from the 1st sample How to Apply CMR to Twitter Analytics: 5-day Collection of Tweets that mention "Trump" via 3 independent Apps (start date Oct 1st 2017)

* Facilitates CMR analysis in open populations, i.e., populations affected by death birth, emigration, immigration.

Recoding Tweets via a Deterministic Cryptographic Hash Function

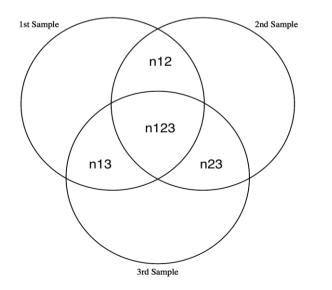

"33158704 @AP: Chancellor Angela Merkel bids for fourth term as Germans head to the polls. https://t.co/PRm8ZeGszG" Twitter User ID Tweet

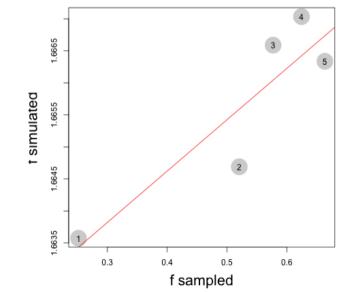
"b16827bf9535f4c61d69351bfe4d73e3"

(fixed-sized bit

string)

Collection of Tweets that mention "Trump" via 3 independent Apps – Results after 24 hours


1	Size of the 1 st sample	=	8531 Tweets	*	
2	Size of the 2 nd sample	=	8496 Tweets	*	
- 3	Size of the 3 rd sample	=	8510Tweets *		
	Number of Tweets recap	otured	(overlap)	=	35
	Number of Tweets recap			=	135


Estimated Population (Tweets with the keyword "Trump" in the timeframe of 24 h considered, Jolly-Seber method for open populations) = 189 783 \hat{N}

* Only unique Tweets (unique Twitter ID, unique Text) are counted, Repetitions *within* M or n are not considered here

Results : Collection of Tweets that mention "Trump" via 3 independent Apps

Are the population estimates correct? To answer this question a first preliminary simulation study has been conducted. The simulation used 3 sets of random hash strings with the same size as the sets obtain from Tweet collection. The evaluation metric used for both the simulated data and the Tweet data was $f = n_{12} + n_{23} + n_{13} / n_{123}$

Discussion

- Rests on word-identical Tweets adaptations are needed when Tweets are varied
- Estimating population-size on the basis of possibly huge amounts of data
- In CMR models, not only population estimators are available but also estimators for survival and mortality.
- Further evaluations with Twitter data (Firehose) are necessary

Thank you!